Hook ‘Em!

Lesson Hook Examples and Resources

LGF Math Team
February 28, 2011

M. McGoldrick
The Effective Mathematics Classroom

What does the research say about teaching and learning mathematics?

- Structure teaching of mathematical concepts and skills around problems to be solved (Checkley, 1997; Wood & Sellars, 1996; Wood & Sellars, 1997)
- Encourage students to work cooperatively with others (Johnson & Johnson, 1975; Davidson, 1990)
- Use group problem-solving to stimulate students to apply their mathematical thinking skills (Artzt & Armour-Thomas, 1992)
- Students interaction in ways that both support and challenge one another’s strategic thinking (Artzt, Armour-Thomas, & Curcio, 2008)
- Activities structured in ways allowing students to explore, explain, extend, and evaluate their progress (National Research Council, 1999).
- There are three critical components to effective mathematics instruction (Shellard & Moyer, 2002):
 1. Teaching for conceptual understanding
 2. Developing children’s procedural literacy
 3. Promoting strategic competence through meaningful problem-solving investigations
- Students in the middle grades are experiencing important crossroads in their mathematical education. They are “forming conclusions about their mathematical abilities, interest, and motivation that will influence how they approach mathematics in later years” (Protheroe, 2007, p. 52).
- Instruction at the middle grades should build on students’ emerging capabilities for increasingly abstract reasoning, including:
 - Thinking hypothetically
 - Comprehending cause and effect
 - Reasoning in both concrete and abstract terms (Protheroe, 2007)

Classroom Observations
Classroom observations are most effective when following a clinical supervision approach (Cogan, 1973; Holland, 1998). During a classroom observation cycle, the classroom observer and the teacher meet for a preconference, during which the terms of the classroom observation are established. A focusing question is selected, and the classroom observer negotiates entry into the teacher’s classroom. Focusing questions provide a focus for classroom observation and data collection, and could emerge from “big idea” questions such as:

1. Algebra Readiness, Cycle 1
 The Effective Mathematics Classroom
What instructional strategy are you looking to expand?
What are the expected outcomes of the classroom observation?

During the observation, data is collected by the classroom observer while the teacher teaches the lesson. The observer collects data regarding only the focusing question that was agreed upon during the preconference. The tool for data collection must match the purpose of the observation.

After the observation, the classroom observer and teacher meet for a postconference. During that time, the teacher looks at the data that is collected, and the observer asks the teacher what he/she notices from the data. Based on the teacher’s responses, a conversation focusing on the questions addressed during the preconference. It is entirely possible (and, indeed, likely) that the focusing question is not answered, but the postconference conversation results in an additional list of questions that can guide continuing classroom observations and post-observation discussions.

Classroom observations: What should the teacher be doing?
In an effective mathematics classroom, an observer should find that the teacher is (Protheroe, 2007):

- **Demonstrating acceptance of students’ divergent ideas.** The teacher challenges students to think deeply about the problems they are solving, reaching beyond the solutions and algorithms required to solve the problem. This ensures that students are explaining both how they found their solution and why they chose a particular method of solution.

- **Influencing learning by posing challenging and interesting questions.** The teacher poses questions that not only stimulate students’ innate curiosity, but also encourages them to investigate further.

- **Projecting a positive attitude about mathematics and about students’ ability to “do” mathematics.** The teacher constantly builds students’ sense of efficacy and instills in her students a belief that not only is the goal of “doing mathematics” attainable, but also they are personally capable of reaching that goal. Mathematics is not presented as something magical or mysterious.

Classroom observations: What should the students be doing?
In an effective mathematics classroom, an observer should find that students are (Protheroe, 2007):

- **Actively engaged in doing mathematics.** Students should be metaphorically rolling up their sleeves and “doing mathematics” themselves, not watching others do the mathematics for them or in front of them.

- **Solving challenging problems.** Students should be investigating meaningful real-world problems whenever possible. Mathematics is not a stagnant field of textbook problems; rather, it is a dynamic way of constructing meaning about the world around us, generating new knowledge and understanding about the real world every day.
• **Making interdisciplinary connections.** Mathematics is not a field that exists in isolation. Students learn best when they connect mathematics to other disciplines, including art, architecture, science, health, and literature. Using literature as a springboard for mathematical investigation is a useful tool that teachers can use to introduce problem solving situations that could have “messy” results. Such connections help students develop an understanding of the academic vocabulary required to “do mathematics” and connect the language of mathematical ideas with numerical representations.

• **Sharing mathematical ideas.** It is essential that students have the opportunity to discuss mathematics with one another, refining and critiquing each other’s ideas and understandings. Communication can occur through paired work, small group work, or class presentations.

• **Using multiple representations to communicate mathematical ideas.** Students should have multiple opportunities to use a variety of representations to communicate their mathematical ideas, including drawing a picture, writing in a journal, or engaging in meaningful whole-class discussions.

• **Using manipulatives and other tools.** Students, at the middle grades in particular, are just beginning to develop their sense of abstract reasoning. Concrete models, such as manipulatives, can provide students with a way to bridge from the concrete understandings of mathematics that they bring from elementary school to the abstract understandings that will be required of them as they study algebra in high school. Teachers teach their students how to use manipulatives, and support the use of manipulatives to solve meaningful problems that are aligned with the lesson’s objectives.

Classroom observations: What kinds of questions to ask?

Teachers should ask questions that promote higher-level thinking. That does not mean that a teacher should not be asking questions at the lower end of Bloom’s Taxonomy of cognitive rigor. In fact, it is important that a teacher begins a lesson with questions at the Recall and Understand levels of Bloom’s Taxonomy. However, in order to solve meaningful problems, students must be challenged with higher-level questions that follow the lower-level questions. Students will find difficulty applying their mathematical ideas or analyzing a mathematical situation if they are not asked higher-level questions in classroom activities and discussions.
What are some best practices for mathematics instruction?

In general, a best practice is a way of doing something that is shown to generate the desired results. In terms of mathematics instruction, we typically think of a best practice as a teaching strategy or lesson structure that promotes a deep student understanding of mathematics.

The Education Alliance (2006) looked at a variety of research studies, and identified a list of instructional strategies that could be considered to be best practices in mathematics education:

- Focus lessons on specific concept/skills that are standards-based
- Differentiate instruction through flexible grouping, individualizing lessons, compacting, using tiered assignments, and varying question levels
- Ensure that instructional activities are learner-centered and emphasize inquiry/problem-solving
- Use experience and prior knowledge as a basis for building new knowledge
- Use cooperative learning strategies and make real-life connections
- Use scaffolding to make connections to concepts, procedures, and understanding
- Ask probing questions which require students to justify their responses
- Emphasize the development of basic computational skills (p. 17)

The National Center for Educational Achievement (NCEA, 2009) examined higher performing schools in five states (California, Florida, Massachusetts, Michigan, and Texas) and determined that in terms of instructional strategies, higher performing middle and high schools use mathematical instructional strategies that include classroom activities which:

- Have a high level of student engagement
- Demand higher-order thinking
- Follow an inquiry-based model of instruction – including a combination of cooperative learning, direct instruction, labs or hands-on investigations, and manipulatives
- Connect to students’ prior knowledge to make meaningful real-world applications
- Integrate literacy activities into the courses – including content-based reading strategies and academic vocabulary development

Additionally, NCEA researchers found that it was important for teachers to create classrooms that foster an environment where students “feel safe trying to answer questions, make presentations, and do experiments, even if they make a mistake” (p. 24).
Comparing Effective Mathematics Instruction with Less Effective Mathematics Instruction

In general, there are two prevalent approaches to mathematics instruction. In skills-based instruction, which is a more traditional approach to teaching mathematics, teachers focus exclusively on developing computational skills and quick recall of facts. In concepts-based instruction, teachers encourage students to solve a problem in a way that is meaningful to them and to explain how they solved the problem, resulting in an increased awareness that there is more than one way to solve most problems. Most researchers (e.g., Grouws, 2004) agree that both approaches are important – that teachers should strive for procedural fluency that is grounded in conceptual understanding. In fact, the notion of numerical fluency, or the ability to work flexibly with numbers and operations on those numbers (Texas Education Agency, 2006), lies at the heart of an effective algebra readiness program.

Teachers make an abundance of instructional decisions that can either discourage or promote an effective learning environment for mathematics. Consider the following examples of instructional decisions made by some teachers:

<table>
<thead>
<tr>
<th>Less Effective Instructional Decisions</th>
<th>More Effective Instructional Decisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>√ Mr. Ashley shows his students step by step how to solve problems and expects them to do the problems exactly the way he does.</td>
<td>✓ Ms. Hernandez asks Tim to explain how he arrived at the answer to his problem.</td>
</tr>
<tr>
<td>√ Ms. Lopez ensures that her students do not get lost by requiring them to stop when they finish an assignment and wait for others to finish.</td>
<td>✓ Mr. Roberts stimulates students’ curiosity and encourages them to investigate further by asking them questions that begin with, “What would happen if..?”</td>
</tr>
<tr>
<td>√ To keep them interested in math, Mr. Flanagan works problems for his students and “magically” comes up with answers.</td>
<td>✓ Ms. Perkins shows her students how “cool” math is and assures them that they all can learn algebra.</td>
</tr>
<tr>
<td>√ Two students are working problems on the board while the rest of the class watches.</td>
<td>✓ The students in Mr. McCollum’s class are talking to each other about math problems.</td>
</tr>
<tr>
<td>√ Students have been given 30 ordered pairs of numbers and are graphing them.</td>
<td>✓ Students are working on creating a graph that shows the path of an approaching hurricane.</td>
</tr>
<tr>
<td>√ Students find the mean, median and mode of a set of numbers.</td>
<td>✓ Students are conducting an experiment, collecting the data and making predictions.</td>
</tr>
<tr>
<td>√ The students in Mr. Jones class are sitting in rows and are all quietly working on their assignment.</td>
<td>✓ Students are sharing ideas while working in pairs or small groups.</td>
</tr>
</tbody>
</table>
| √ At the end of class Ms. Stark collects | ✓ Students have done their work on chart paper and are holding the chart paper while explaining to the class how they reached their
everyone's worksheet and grades them.

× Students are in groups. One student in the group works out the problem while the others closely observe.

× Mr. Johnson will only allow calculators in his classroom during the second half of the year. He believes that students need to learn all their facts before they use calculators.

× Ms. Brown is showing her students how they can use a formula to easily find the value of any term in a sequence.

× During the first week of school Ms. Fitzwater holds up the text book and says, "I hope you are all ready to work very hard this year. This is a very thick book and we will be covering every single thing in it."

× Mr. Swanson believes that all students should get the same instruction at the same time. To accomplish this he only uses whole group instruction.

× In Mr. McBride's class he spends 99% of class time on skills and computation because his students have difficulty understanding word problems.

conclusions.

✓ Students are acting out a problem in front of the class. Others in the class participate in a discussion of the problem.

✓ Students are using calculators to determine patterns when multiplying integers.

✓ Mr. Osborne tells his students that their text book is only one resource that he uses in his classroom. Tonight their homework is out of that resource.

✓ Students are using color tiles to build the terms in a sequence.

✓ Some students are working in groups, some in pairs and some individually. Not all students are working on exactly the same thing.

✓ Students read about the history of the Pythagorean Theorem. After reading, they solve problems using the theorem. Students then write about what they did compared to the original uses of the Pythagorean Theorem.
References

Note: Checkly, 1997; Wood & Sellars, 1996; Wood & Sellars, 1997; Artzt & Armour-Thomas, 1992 are summarized in Posamentier, Hartman, & Kaiser, 1998

Hooks

Brown Bag: Place objects in a brown bag. Have students reach in and make observations about the contents of the bag (similarities, differences). This can also be used for students to pull out a strip of paper that gives them or their group a task to complete.

Gallery Walk: Using images or objects, students move from station to station making observations. The goal is for students to come to a conclusion about the objects/images that is related to a particular concept.

Survey: Survey your students by asking questions and having them step to a side or corner of the room that represents their response.

Prediction: Present a scenario and have students make a prediction (great for probability, statistics and data analysis).

Stumped: Create a scenario where someone is stumped and the students must figure out a solution independently or in groups.

Song: Play a song as the students enter the room. Leave it on during the warm-up. Ask students how the song might be related to a given math concept. Let them share their ideas before you explain your purpose for doing it.

Experiment: Conduct an experiment that illustrates a concept. For example, use water to fill 3D containers to illustrate volume or help students make a recipe using benchmark measurements.

Vocabulary connections: Give students a group of words related to the lesson...have them guess the topic or find the word that doesn’t fit in the group.

News: Bring in a newspaper article or online news clip that addresses an area of interest or importance to your students.

Skit/Dress-Up: Give students roles and have them act out a skit. Or, you can come in dressed for a given role. It can be as simple has wearing a sports jersey if you’re writing algebraic equations on a person buying a $75 ticket and x number of hot dogs at a game.

And some more...

Show a movie or TV clip, read an excerpt from a book, writing prompt ("Tell me about a time when...")', Riddles, Brain Teasers, scavenger hunt

* Resource List from Meredith Mehra, GPC ‘05 at the TFA Mid-Atlantic Mini-Summit on March 7, 2009
Ways to Hook Students In at the Beginning of the Lesson

Need ideas for lesson openings? This document compiles a series of strategies, resources, and examples for getting students engaged from the start. What are the benefits of using a hook? Hooks (or “anticipatory sets”) prepare and motivate students for learning. Effective strategies grab the attention of all students, even those not initially focused upon learning – and by having an activity related to the lesson objective it shifts student attention to the learning process.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description & Resources</th>
</tr>
</thead>
</table>
| **Ask a Question** | **Description:** In order to get your students engaged in an upcoming lesson, ask them a question that will interest them and activate prior knowledge.
Example: Ask students to recall their favorite movie or favorite story from earlier in the year. Ask students to recall who the story is mostly about and use this as an opening to introduce main character. |
| **Use a trade book** | **Description:** Using a picture book at the start of the lesson can be an effective strategy to motivate students and provoke interest. Math instruction, reading comprehension skills, writing traits, science and even social studies concepts can all be introduced using children’s literature. Picture books help make learning new concepts more accessible to students by highlighting the concepts in cultural context.
Example: Determining cause and effect relationships can be a challenging skill for upper elementary students to learn. *The Great Kapok Tree: A Tale of the Amazon Rain Forrest*, by Lynne Cherry is a picture book that contains many high-interest examples of cause and effect relationships.
Resources:
- http://math.asu.edu/~bethgn/bibliography.shortened.htm - this provides a comprehensive list to use with math concepts
- http://classroom.jc-schools.net/read/picture-books.pdf - this site provides some good ideas of books to use in order to introduce reading comprehension skills
- http://www.lookybook.com/ - membership is required, but this site gives you access to many books online
- *Using Picture Books To Teach Writing With The Traits* by Ruth Culham – This book provides an extensive list of books to use in order to teach the six traits
- *Using Picture Books to Teach Language Arts Standards in Grades 3-5* Brenda S. Copeland, Patricia A. Messner
- http://www.lebanon.k12.mo.us/profdev/picturethis_20050406.pdf - this includes many ideas of books to use across content areas. |
| **Play a game** | **Description:** As noted above, the anticipatory set can be used to connect new learning to what students have learned already. Playing a quick game in order to recall prior knowledge can be an effective strategy for getting students engaged in the lesson and prepared to build off prior knowledge.
Example: play a quick math facts game, such as ‘around the world’ prior to introducing multi-digit multiplication.
Resources:
http://beta.tfanet.org/wps/myportal/teachinglearningcenter/resourceexchange/resourceprofile?resource_id=4fa44dae06433a9:68c8b8e8:11dab19ee7:-7d4 – this is a dice game to reinforce number sense using decimals |
| **Tell a story** | **Description:** In order to highlight a concept, a teacher can choose to tell a story that is closely related to the concept.
Example: For instance, in order to demonstrate the skill of sequencing, a teacher can give a humorous example of her day out of order, and ask students to reorder the story in the correct order. |
| **Use a visual** | **Description:** Teachers can use visual aids to encourage students to better connect to new concepts.
Example: A teacher could tell students that they have thirty seconds to remember everything they can about a painting. After the thirty seconds, the teacher will remove the painting and ask students to recall all they can about the painting. The teacher will solicit ideas and use this to introduce distinguishing between main idea and supporting details. |
|------------------|--|
| **Use manipulatives or models** | **Description:** Teachers can use physical models to prepare students to learn a specific concept or better highlight the critical attributes of new concepts.
Examples: In order to teach geometry, the teacher could use a variety of models of two or three-dimensional shapes.
- http://teachingasleadership.org/sites/default/files/How_To/PP/P-3/p3_opening.pdf (look at Objective 1) |
| **Writing Prompt** | **Description:** Ask students to write everything they know about an upcoming learning objective, or present them with a prompt that is closely related to the learning objective.
Example: Prior to teaching students about area and perimeter, give them a writing prompt about remodeling their room including re-wallpapering a wall and replacing the trim around the carpet. |
| **Graphic Organizer** | **Description:** In order to prepare students for the lesson a teacher could ask student to use a graphic organizer to generate thoughts closely related to the learning objective.
Examples: The teacher could ask students to generate statements that they are certain are true and those that they are not certain about, recording statements in a T-Cart, prior to engaging in a lesson on fact and opinion.
| **Make a prediction** | **Description:** Students have real-life context around a variety of skills they are required to learn in the upper elementary grades. Tapping into their real-life knowledge and asking them to make predictions using what they know can be an effective strategy in order to build new knowledge.
Example: Prior to teaching a lesson on measurement, have students make predictions about the size of objects that are familiar to them. |
| **Tell a joke** | **Description:** Using humor is a sure way to engage your students. Telling an initial joke & then probing students or explaining to students why the joke is humorous can be a fun way to introduce a lesson
Example: To teach homonyms, tell the following joke (use a whisper for the pony’s voice):
A pony walks into a restaurant and says to the waiter “excuse me sir, can I order a soda?” The waiter responds “excuse me, but I can’t hear you!” The pony then says “I’m sorry but I’m a little hoarse.”
Resources:
- http://www.math.ualberta.ca/~runde/jokes.html - these are advanced for the upper elementary classroom, but may prompt your creative side or give you ideas on how to format jokes. |
| **Use a song or video clip** | **Description:** There are a wide variety of songs and video-clips available for use in the classroom. Using songs and clips can be a high-tech way of drawing your students into classroom content
Resource:
- www.brainpop.com – there is a membership fee to this sight, but it could be worth it if this is a strategy you use often
- www.asset.asu.edu/ – this site is easy to search and offers a wide variety of videos |
| Brain-storm | **Description:** Your students possess a great deal of contextual knowledge around a variety of topics and issues related to classroom content. Tapping into this prior to teaching a new concept may be an effective method for setting the stage for new learning.
Example: Prior to introducing a science lesson on recycling, ask students to brainstorm a list of what happens to things that they don’t recycle |
| Give a scenario | **Description:** In order to highlight the major learning of a particular lesson, give students a scenario which requires them to draw conclusions around the major learning objective.
Example: Prior to teaching students to make inferences or draw conclusions, the teacher could present students with the following scenario:
“A man walks out of a bank wearing a black ski mask”
The teacher would then prompt students to think through some possible conclusions. |
| Present a challenge/ riddle | **Description:** Prior to introducing a new concept, give students a challenge or problem to solve. Using inquiry can engage students and motivate them to learn.
Example: Prior to teaching multiplication give students a real-life example that would be time-consuming to solve using repeated addition. |
| Act it out | **Description:** ask your students to act out something in order to highlight a learning objective.
Example: To teach students to classify living organisms as vertebrates or invertebrates, give several students an organism to act out. After the class guesses the organism write the name of the organism on the board, making sure to list vertebrates in one column and invertebrates in the other. Use this to prompt a discussion regarding the differences between the two groups. |
| Scavenger Hunt | **Description:** Present student with clues about the learning objective they will be taking on for the day.
Example: In order to teach students to measure with appropriate units, give them a variety of objects to measure using tools easily available to them. |
Easy Pick-N-Choose Lesson Planning
(Just pick one from each section, everyday, and elaborate based on your content and objective)

<table>
<thead>
<tr>
<th>Part Of the Lesson</th>
<th>Strategies</th>
<th>What is this?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Now</td>
<td>3-5 short answer questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 standardized test prep questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-4 definition copying</td>
<td></td>
</tr>
<tr>
<td>Opening</td>
<td>Pop culture video clip</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Song Lyric Analysis/Tie In</td>
<td></td>
</tr>
<tr>
<td></td>
<td>You’d never believe you’d be able to do this at the end of the period - Challenge!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypothesis Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quick Write</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skit/dramatic interpretation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fact or Fiction?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>News Headline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toss the Ball!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Real-World Connection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Picture Predictions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>How are these related?</td>
<td></td>
</tr>
<tr>
<td>Intro to New Material</td>
<td>Foldable Notes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Classic Notes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cornell Notes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloze/Fill-in-the-Blank notes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speed notes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Definition flipbooks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concept/Word maps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Make Flashcards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read & Highlight an Article</td>
<td></td>
</tr>
<tr>
<td>Guided Practice</td>
<td>Lab Investigation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group model/diagram</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review game</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pair-Quiz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dance Moves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simon Says</td>
<td></td>
</tr>
<tr>
<td>Independent Practice</td>
<td>Conclusion/Reflection Questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create song/rap/poem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative story writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry Erase Boards</td>
<td></td>
</tr>
<tr>
<td>Closing</td>
<td>Exit ticket</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thumbs up, thumbs down</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fist to Five</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group Forum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethics Question</td>
<td></td>
</tr>
</tbody>
</table>

Adopted from Jennifer Freeman's Easy Pick-N-Choose Lesson Planning Document
Hook ‘Em!

One Example

<table>
<thead>
<tr>
<th>Standard/Objective:</th>
<th>SWBAT order and compare fractions with like and unlike denominators.</th>
<th>Launch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>“So today... instead of comparing the size of cheesy bread like little Tyler did, we are going to start comparing fractions to the benchmark ½.”</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hook Purpose / Goal</th>
<th>Hook Format/ Details</th>
<th>Logistics</th>
</tr>
</thead>
</table>
| **Overarching Goals:** Engagement and connection to prior knowledge | **Format:** Story
Details: I will tell the story about Tyler asking for cheesy bread. Main idea will be that he understood the concept of “more than” and “half”. He knew how to compare sizes. | **Time & Materials:** After Do Now for 3 minutes Images and manipulatives of “real” fractions for launch (pizza, money (coins & 1 dollar)) |
| My goal is two-fold. I want to decrease the anxiety my students feel about fractions by beginning the lesson focused on a less threatening concept. Additionally, I want to focus on the concept of comparisons and reinforce that they already know how to compare sizes. This will transition into the launch of comparing fractions. | | **Teacher Will...**
I will tell a story. I will begin asking at what age kids can understand math and lead in from there to understanding comparisons at 15 months. | **Students Will...**
My students will listen to the story, make predictions about the characters (Tyler, his dad and his mom) reactions, and the reason for Tyler’s response, and students will turn and talk with their seat partner. |

* ENGAGING • connected to content • relevant/activates prior knowledge • supportive of management/climate*

M. McGoldrick
<table>
<thead>
<tr>
<th>Hook 'Em!</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD/OBJECTIVE:</td>
</tr>
<tr>
<td>So today...</td>
</tr>
<tr>
<td>HOOK PURPOSE / GOAL</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Teacher Will...</td>
</tr>
</tbody>
</table>